Formal exponential maps and Fedosov resolutions

Hsuan-Yi Liao joint work with with Mathieu Stiénon

TMS Annual Meeting, Academia Sinica January 17th, 2022

《曰》 《聞》 《臣》 《臣》 三臣

3 Application to Fedosov resolutions

- Classical exponential map:
 - Lie theory: exp : $\mathfrak{g} \to \underline{G} : A \mapsto \sum_{n=0}^{\infty} \frac{1}{n!} A^n$
 - smooth manifold: $\exp^{\nabla} T_M|_p \to M$: $\exp^{\nabla}(v_p) =$ the value of the geodesic along v_p at time 1
- Laurent-Gengoux, Stiénon, Xu (arXiv:1408.2903, Adv Math 2021): found an iteration formula of the infinity jet of exp map of Lie groupoid. Above 2 classical exp maps are special cases.
- Stiénon and I (arXiv:1605.09722, IMRN 2019):
 - used a similar iteration formula to define formal exponential map pbw = pbw[∇] for (ℤ-)graded manifolds
 - extended the classical construction of Dolgushev-Fedosov resolution to graded manifolds (important in deformation quantization)
 - used pbw to give a new construction of this resolution
- Seol, Stiénon, Xu (arXiv:2106.00812, to appear in Communications in Mathematical Physics): studied pbw for dg manifolds (obstruction of compatibility = Atiyah class).

Application to Fedosov resolutions

Theorem (Poincaré-Birkhoff-Witt)

Let ${\mathfrak g}$ be a finite dimensional Lie algebra. The map

 $\mathsf{pbw}:S(\mathfrak{g}) o\mathcal{U}(\mathfrak{g})$

defined by the explicit formula

$$\mathsf{pbw}(X_1 \odot \cdots \odot X_n) = \frac{1}{n!} \sum_{\sigma \in S_n} X_{\sigma(1)} \cdots X_{\sigma(n)}$$

and is an isomorphism of coalgebras.

$$\mathfrak{g} \xrightarrow{\exp} G$$

 $S(\mathfrak{g}) \cong \mathcal{D}_0(\mathfrak{g}) \xrightarrow{\exp_* = \mathsf{pbw}} \mathcal{D}_e(G) \cong \mathcal{U}(\mathfrak{g})$

Exponential map for smooth manifolds

- ullet connection abla on smooth manifold M
- exp : $T_M \rightarrow M \times M$ (bundle map) defined by geodesics.
 - $\Gamma(S(T_M))$ seen as space of differential operators on T_M , all derivatives in the direction of the fibers, evaluated along the zero section of T_M
 - $\mathcal{D}(M)$ seen as space of differential operators on $M \times M$, all derivatives in the direction of the fibers, evaluated along the diagonal section $M \to M \times M$
- pbw := exp_{*} : Γ(S(T_M)) [≅]→ D(M) is an isomorphism of left modules over C[∞](M) called Poincaré-Birkhoff-Witt isomorphism

Taylor series of $T_mM \xrightarrow{\exp} \{m\} \times M \xrightarrow{f} \mathbb{R}$ at $0_m \in T_mM$ is

$$\sum_{J\in\mathbb{N}_0^n} \frac{1}{J!} \big(\operatorname{pbw}(\partial_x^J) f \big)(m) \otimes y^J \quad \in \widehat{S}(T_m^{\vee}M).$$

Application to Fedosov resolutions

Algebraic characterization of pbw

Theorem (Laurent-Gengoux, Stiénon, Xu)

$$pbw(f) = f, \quad \forall f \in C^{\infty}(M);$$

 $pbw(X) = X, \quad \forall X \in \mathfrak{X}(M);$
 $pbw(X^{n+1}) = X \cdot pbw(X^n) - pbw(\nabla_X X^n), \quad \forall n \in \mathbb{N}.$

Therefore, for all $n \in \mathbb{N}$ and $X_0, \ldots, X_n \in \mathfrak{X}(M)$,

$$\mathsf{pbw}(X_0 \odot \cdots \odot X_n) = \frac{1}{n+1} \sum_{k=0}^n \left\{ X_k \cdot \mathsf{pbw}(X^{\{k\}}) - \mathsf{pbw}\left(\nabla_{X_k}(X^{\{k\}})\right) \right\}$$

where
$$X^{\{k\}} = X_0 \odot \cdots \odot X_{k-1} \odot X_{k+1} \odot \cdots \odot X_n$$
.

Proposition

pbw : $\Gamma(S(T_M)) \rightarrow \mathcal{D}(M)$ is an isomorphism of coalgebras over $C^{\infty}(M)$.

Infinite jet of exponential map

2 Formal exponential map for graded manifolds

3 Application to Fedosov resolutions

Differential graded manifolds

Definition

A Z-graded manifold \mathcal{M} with support M is a sheaf \mathcal{R} of Z-graded commutative algebras over M such that $\mathcal{R}(U) \cong C^{\infty}(U) \otimes S(V^{\vee})$ for sufficiently small open subsets U of M and some Z-graded vector space V. Here $S(V^{\vee})$ denotes the graded algebra of polynomials on V.

$$C^{\infty}(\mathcal{M}) := \mathcal{R}(\mathcal{M})$$

Definition

A dg manifold is a \mathbb{Z} -graded manifold \mathcal{M} endowed with a vector field $Q \in \mathfrak{X}(\mathcal{M})$ of degree +1 such that $[Q, Q] = 2 \ Q \circ Q = 0$.

A D > 4 回 > 4 回 > 4 回 > 1 回 9 Q Q

Why dg manifolds?

- The theory of super manifolds (Z₂-graded manifolds) was motivated by the theory of fermions and bosons.
- AKSZ (Alexandrov-Kontsevich-Schwarz-Zaboronsky) formulation of quantum field theory was based on dg manifolds. (Z₂-graded.)
- Many interesting examples: Lie algebras, complex manifolds, homotopy Lie algebras, foliations, higher Lie algebroids, etc.
- Dg manifolds (of positive amplitudes) is a model for "derived differential geometry."

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Formal exponential map

- Connections can be defined on graded manifolds by adding suitable signs.
- Difficult to study geodesics on graded manifolds. It is complicated to generalize the classical exponential map.
- A short cut: The algebraic relations satisfied by pbw serve as an alternative definition.

The formal exponential map associated to a connection ∇ on T_M is the morphism of left $C^{\infty}(\mathcal{M})$ -modules

pbw :
$$\Gamma(S(T_{\mathcal{M}})) \rightarrow \mathcal{D}(\mathcal{M}),$$

inductively defined by the relations

$$pbw(f) = f \qquad \forall f \in C^{\infty}(\mathcal{M}),$$
$$pbw(X) = X \qquad \forall X \in \Gamma(\mathcal{T}_{\mathcal{M}}),$$
$$pbw(X_0 \odot \cdots \odot X_n) = \frac{1}{n+1} \sum_{k=0}^n \epsilon_k \left\{ X_k \cdot pbw(X^{\{k\}}) - pbw\left(\nabla_{X_k} X^{\{k\}}\right) \right\}$$

for
$$n \in \mathbb{N}$$
 and homogeneous $X_0, \ldots, X_n \in \Gamma(T_{\mathcal{M}})$,
 $\epsilon_k = (-1)^{|X_k|(|X_0|+\cdots+|X_{k-1}|)}$,
 $X^{\{k\}} = X_0 \odot \cdots \odot X_{k-1} \odot X_{k+1} \odot \cdots \odot X_n$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Theorem (L, Stiénon)

The formal exponential map

pbw :
$$\Gamma(S^{\leq k}(T_{\mathcal{M}})) \to \mathcal{D}^{\leq k}(\mathcal{M})$$

is a well-defined isomorphism of filtered coalgebras over $C^{\infty}(\mathcal{M})$.

Remark (Seol-Stiénon-Xu 2021)

An analogous isomorphism exists on a dg manifold iff the Atiyah class vanishes.

Infinite jet of exponential map

3 Application to Fedosov resolutions

- Fedosov constructed an operator for solving the deformation quantization problem on symplectic manifolds. (J. Differential Geom. 1994)
- Emmrich and Weinstein studied Fedosov-type operators for smooth manifolds. The construction was given by iteration method. (Lie Theory and Geometry, 1994)
- In the same paper, Emmrich and Weinstein revealed a relationship between exponential maps and Fedosov-type operators. Their method was based on the geodesic equations.
- Dolgushev realized that Emmrich-Weinstein construction gives rise to resolutions of the algebra of smooth function on a manifold and applied it to globalizing Kontsevich formality morphism. (Adv. Math. 2005)

Stiénon and I (IMRN 2019) extended Dolgushev's construction and got Dolgushev-Fedosov resolutions for graded manifolds:

 $C^{\infty}(\mathcal{M}) \xrightarrow{\tau^{\nabla}} \Omega^{0}(\mathcal{M}, \hat{S}(T^{\vee}_{\mathcal{M}})) \xrightarrow{D^{\nabla}} \Omega^{1}(\mathcal{M}, \hat{S}(T^{\vee}_{\mathcal{M}})) \xrightarrow{D^{\nabla}} \cdots$

We apply the formal exponential map pbw to

- obtain a new construction of Dolgushev-Fedosov resolutions
- prove Emmrich-Weinstein type theorem for graded manifolds.

Classical construction

On a graded manifold \mathcal{M} of dimension n, one has the

• Koszul operator $\delta: \Omega^p(\mathcal{M}, S^q T^{\vee}_{\mathcal{M}}) \to \Omega^{p+1}(\mathcal{M}, S^{q-1} T^{\vee}_{\mathcal{M}}),$

$$\delta(\omega \otimes f) = \sum_{k=1}^{n} (-1)^{\left|\frac{\partial}{\partial y_{k}}\right| |\omega|} dx_{k} \wedge \omega \otimes \frac{\partial}{\partial y_{k}} (f)$$

• homotopy operator $h: \Omega^p(\mathcal{M}, S^q T^{\vee}_{\mathcal{M}}) \to \Omega^{p-1}(\mathcal{M}, S^{q+1}T^{\vee}_{\mathcal{M}}),$

$$h(\omega \otimes f) = \frac{1}{p+q} \sum_{k=1}^{n} (-1)^{|y_k||\omega|} i_{\frac{\partial}{\partial x_k}} \omega \otimes y_k \cdot f.$$

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ 三臣 - のへ⊙

• Twist $-\delta$ by covariant derivative d^{∇} , but $(-\delta + d^{\nabla})^2 \neq 0$.

• Consider operators of the form

$$D^{\nabla} = -\delta + d^{\nabla} + X^{\nabla}$$

where the correction

$$X^
abla \in \Omega^1(\mathcal{M}, \hat{S}^{\geqslant 2}(T^ee_\mathcal{M}) \otimes T_\mathcal{M}).$$

• Solve
$$X^
abla$$
 by the equation $(D^
abla)^2=0.$

Theorem

Let ∇ be a torsion-free connection. There exists a unique degree one element $X^{\nabla} \in \Omega^1(\mathcal{M}, \hat{S}^{\geq 2}(T^{\vee}_{\mathcal{M}}) \otimes T_{\mathcal{M}})$ (given by iterating an equation) such that

• $h(X^{\nabla}) = 0$, (more precisely, h is $h \otimes id$)

•
$$(D^{\nabla})^2 = 0.$$

(日)(1)

Our construction

- \mathcal{M} graded manifold of dimension n
- Pick a connection ∇ on $T_{\mathcal{M}}$.
- Obtain associated pbw : $\Gamma(S(T_{\mathcal{M}})) \rightarrow \mathcal{D}(\mathcal{M})$.
- Consider the connection $abla^{\sharp}$ on $S(\mathcal{T}_{\mathcal{M}})$ defined by

 $abla^{\sharp}_X S := \mathsf{pbw}^{-1} \left(X \cdot \mathsf{pbw}(S)
ight)$

for all $X \in \Gamma(\mathcal{T}_{\mathcal{M}})$ and $S \in \Gamma(S(\mathcal{T}_{\mathcal{M}}))$.

- The connection ∇^{\sharp} induces a connection on the dual bundle $\hat{S}(T_{\mathcal{M}}^{\vee})$. By abusing notations, we use the same symbol ∇^{\sharp} for this induced connection.
- We have the covariant derivative

$$d^{\nabla^{\sharp}}:\Omega^p\big(\mathcal{M},\hat{S}(\mathcal{T}^{\vee}_{\mathcal{M}})\big)\to\Omega^{p+1}\big(\mathcal{M},\hat{S}(\mathcal{T}^{\vee}_{\mathcal{M}})\big)$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Theorem (L, Stiénon)

• The connection $abla^{\sharp}$ is flat. Namely

$$(d^{\nabla^{\sharp}})^2 = 0$$

• If ∇ is a torsion-free connection, then

$$d^{\nabla^{\sharp}} = -\delta + d^{\nabla} + X^{\nabla}$$

with

$$X^
abla \in \Omega^1(\mathcal{M}, \hat{S}^{\geqslant 2}(T^ee_\mathcal{M}) \otimes T_\mathcal{M}),$$

degree($X^{
abla}$) = +1, and $h(X^{
abla})$ = 0.

Therefore,

$$d^{
abla^{
eq}} = D^{
abla}$$

Emmrich-Weinstein theorem for graded manifolds

Theorem (L, Stiénon)

There is a degree zero injective algebraic homomorphism τ^{∇} which defines a resolution for $C^{\infty}(\mathcal{M})$

 $au^
abla : \mathcal{C}^\infty(\mathcal{M}) o (\Omega^ullet(\mathcal{M}, \hat{S}(\mathcal{T}^ee_\mathcal{M}))), \ d^{
abla^t})$

Furthermore, the map τ^{∇} can be expressed by

$$\tau^{\nabla}(f) = \sum_{J \in \mathbb{N}_0^n} \frac{1}{J!} y^J \Big(\operatorname{pbw} \left(\overleftarrow{\partial_x^J} \right) f \Big) \qquad \forall f \in C^{\infty}(\mathcal{M})$$

$$\overleftarrow{\partial_x^J} = \underbrace{\partial_{x_n} \odot \cdots \odot \partial_{x_n}}_{J_n \text{ factors}} \odot \underbrace{\partial_{x_{n-1}} \odot \cdots \odot \partial_{x_{n-1}}}_{J_{n-1} \text{ factors}} \odot \cdots \odot \underbrace{\partial_{x_1} \odot \cdots \odot \partial_{x_1}}_{J_1 \text{ factors}}$$
and $y^J = y_1^{J_1} y_2^{J_2} \cdots y_n^{J_n}$ for $J = (J_1, J_2, \dots, J_n) \in \mathbb{N}_0^n$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへの

Corollary (Emmrich, Weinstein)

For classical (i.e. non-graded) manifolds,

$$\tau^{\nabla}(f) = \sum_{J \in \mathbb{N}_0^n} \frac{1}{J!} (\operatorname{pbw}(\partial_x^J) f) \otimes y^J \qquad \forall f \in C^{\infty}(M)$$

Thus, $\tau^{\nabla}(f) = Taylor expansion of exp^* f along zero section.$

Application to Fedosov resolutions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Thank you!

- Camille Laurent-Gengoux, Mathieu Stiénon, and Ping Xu, Poincaré-Birkhoff-Witt isomorphisms and Kapranov dg-manifolds, Adv. Math. 387 (2021), Paper No. 107792, 62. MR 4271478
- Hsuan-Yi Liao and Mathieu Stiénon, Formal exponential map for graded manifolds, Int. Math. Res. Not. IMRN (2019), no. 3, 700-730. MR 3910470
- Seokbong Seol, Mathieu Stiénon, and Ping Xu, Dg manifolds, formal exponential maps and homotopy Lie algebras, arXiv e-prints (2021), arXiv:2106.00812.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○